Small Business Innovation Research/Small Business Tech Transfer

Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications, Phase I

Completed Technology Project (2012 - 2013)

Project Introduction

The objective of this Phase I STTR program is to adapt NanoSonic's HybridSil™ nanocomposite technology for the creation of next generation highly flexible, fire resistant foams capable of extended operational lifetimes within demanding aerospace platforms. Phase I optimized nanocomposite foams would have immediate utility within a broad spectrum NASA applications as non-halogenated fire proofing, insulative, de-icing, and energy absorptive materials with tailorable breathabilities. To that end, NanoSonic and Dr. James McGrath's research group of Virginia Tech will work to design, optimize, and scale-up a family of highly flexible polyimide-polyorganosiloxane HybridSil™ foams with statistically optimized cell content, mechanical durability, thermooxidative resilience, gas permeability, flexibility, and flame retardancy. This program will build from established non-halogenated, high temperature HybridSil™ technology that has passed the ISO 9705 room corner burn test to obtain qualification as "fire restricting" per the International Maritime Organization, demonstrated a flame spread rating of zero (ASTM E-84), vielded thermal conductivities below commercially available polyurethane foams (< 50 mW/mK), and elastomeric resilience (recovery from 1000 % deformation) from ballistic / blast impact threats . Rapid Phase III transition to commercial integration will be facilitated through an established HybridSil™ pilot scale manufacturing infrastructure capable of producing > 8,000 lbs. resin / day.

Primary U.S. Work Locations and Key Partners

Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications, Phase I

Table of Contents

Project Introduction	1
Primary U.S. Work Locations	
and Key Partners	1
Project Transitions	2
Organizational Responsibility	2
Project Management	2
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

Small Business Innovation Research/Small Business Tech Transfer

Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications, Phase I

Completed Technology Project (2012 - 2013)

Organizations Performing Work	Role	Туре	Location
Nanosonic, Inc.	Lead Organization	Industry	Pembroke, Virginia
• Kennedy Space Center(KSC)	Supporting Organization	NASA Center	Kennedy Space Center, Florida
Virginia Polytechnic Institute and State University(VA Tech)	Supporting Organization	Academia	Blacksburg, Virginia

Primary U.S. Work Locations		
Florida	Virginia	

Project Transitions

○ F

February 2012: Project Start

February 2013: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/138592)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Nanosonic, Inc.

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Principal Investigator:

Vince Barnauskas

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Highly Flexible, Fire Resistant HybridSil Foams for Next Generation Fireproofing, Insulation, and Energy Absorption NASA Applications, Phase I

Completed Technology Project (2012 - 2013)

Technology Areas

Primary:

- TX06 Human Health, Life Support, and Habitation Systems
 - └─ TX06.4 Environmental Monitoring, Safety, and Emergency Response
 - □ TX06.4.2 Fire:
 Detection, Suppression, and Recovery

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

